RSGISLib Plotting Tools
Statistical Plots
- rsgislib.tools.plotting.residual_plot(y_true, residuals, out_file, out_format='PNG', title=None)
A function to create a residual plot to investigate the normality and homoscedasticity of model residuals.
- Parameters:
y_true – A numpy 1D array containing true/observed values.
residuals – A numpy 1D array containing model residuals.
out_file – Path to the output file.
out_format – Output format supported by matplotlib (e.g. “PNG” or “PDF”). Default: PNG
title – A title for the plot. Optional, if None then ignored. (Default: None)
- rsgislib.tools.plotting.residual_density_plot(y_true: array, residuals: array, out_file: str, out_format: str = 'PNG', out_dpi: int = 800, title: str = None, cmap_name: str = 'viridis', use_log_norm: bool = False, density_norm_vmin: float = 1, density_norm_vmax: float = None, freq_nbins: int = 50, val_plt_range: List[float] = None, resid_plt_range: List[float] = None)
A function to create a residual plot where the scatter plot will be represented as a density plot. This plot allows the investigatation of the normality and homoscedasticity of model residuals.
- Parameters:
y_true – A numpy 1D array containing true/observed values.
residuals – A numpy 1D array containing model residuals.
out_file – Path to the output file.
out_format – Output format supported by matplotlib (e.g. “PNG” or “PDF”). Default: PNG
out_dpi – the output DPI of the save raster plot (default: 800)
title – A title for the plot. Optional, if None then ignored. (Default: None)
cmap_name – The name of the colour bar to use for the density plot Default: viridis
use_log_norm – Specify whether to use log normalisation for the density plot instead of linear. (Default: False)
density_norm_vmin – the minimum density value for the normalisation (default: 1)
density_norm_vmax – the maximum density value for the normalisation (default: None)
freq_nbins – the number of bins used for the frequency histogram (Default: 50)
val_plt_range – A user specified x-axis range of values (Default: None). If specified then must be a list of 2 values.
resid_plt_range – A user specified y-axis range of values (Default: None) If specified then must be a list of 2 values.
- rsgislib.tools.plotting.quantile_plot(residuals, ylabel, out_file, out_format='PNG', title=None)
A function to create a Quantile-Quantile plot to investigate the normality of model residuals.
- Parameters:
residuals – A numpy 1D array containing model residuals.
ylabel – A string defining a label for the y axis
out_file – Path to the output file.
out_format – Output format supported by matplotlib (e.g. “PNG” or “PDF”). Default: PNG
title – A title for the plot. Optional, if None then ignored. (Default: None)
Image Plots
- rsgislib.tools.plotting.plot_image_spectra(input_img, vec_file, vec_lyr, output_plot_file, wavelengths, plot_title, scale_factor=0.1, show_refl_std=True, refl_max=None)
A utility function to extract and plot image spectra.
- Parameters:
input_img – is the input image
vec_file – is the region of interest file as a vector file - if multiple polygons are defined the spectra for each will be added to the plot.
vec_lyr –
output_plot_file – is the output PDF file for the plot which has been create
wavelengths – is list of numbers with the wavelength of each band (must have the same number of wavelengths as image bands)
plot_title – is a string with the title for the plot
scale_factor – is a float specifying the scaling to percentage (0 - 100). (Default is 0.1, i.e., pixel values are scaled between 0-1000; ARCSI default).
show_refl_std – is a boolean (default: True) to specify whether a shaded region showing 1 standard deviation from the mean on the plot alongside the mean spectra.
refl_max – is a parameter for setting the maximum reflectance value on the Y axis (if None the maximum value in the dataset is used
from rsgislib.tools import plotting inputImage = 'injune_p142_casi_sub_utm.kea' roiFile = 'spectraROI.shp' outputPlotFile = 'SpectraPlot.pdf' wavelengths = [446.0, 530.0, 549.0, 569.0, 598.0, 633.0, 680.0, 696.0, 714.0, 732.0, 741.0, 752.0, 800.0, 838.0] plotTitle = "Image Spectral from CASI Image" plotting.plot_image_spectra(inputImage, roiFile, outputPlotFile, wavelengths, plotTitle)
- rsgislib.tools.plotting.plot_image_comparison(inputImage1, inputImage2, img1Band, img2Band, outputPlotFile, numBins=100, img1Min=None, img1Max=None, img2Min=None, img2Max=None, img1Scale=1, img2Scale=1, img1Off=0, img2Off=0, normOutput=False, plotTitle='2D Histogram', xLabel='X Axis', yLabel='Y Axis', ctable='jet', interp='nearest')
A function to plot two images against each other.
- Parameters:
inputImage1 – is a string with the path to the first image.
inputImage2 – is a string with the path to the second image.
img1Band – is an int specifying the band in the first image to be plotted.
img2Band – is an int specifying the band in the second image to be plotted.
outputPlotFile – is a string specifying the output PDF for the plot.
numBins – is an int specifying the number of bins within each axis of the histogram (default: 100)
img1Min – is a double specifying the minimum value to be used in the histogram from image 1. If value is None then taken from the image.
img1Max – is a double specifying the maximum value to be used in the histogram from image 1. If value is None then taken from the image.
img2Min – is a double specifying the minimum value to be used in the histogram from image 2. If value is None then taken from the image.
img2Max – is a double specifying the maximum value to be used in the histogram from image 2. If value is None then taken from the image.
img1Scale – is a double specifying the scale for image 1 (Default 1).
img2Scale – is a double specifying the scale for image 2 (Default 1).
img1Off – is a double specifying the offset for image 1 (Default 0).
img2Off – is a double specifying the offset for image 2 (Default 0).
normOutput – is a boolean specifying whether the histogram should be normalised (Default: False).
plotTitle – is a string specifying the title of the plot (Default: ‘2D Histogram’).
xLabel – is a string specifying the x axis label (Default: ‘X Axis’)
yLabel – is a string specifying the y axis label (Default: ‘Y Axis’)
ctable – is a string specifying the colour table to be used (Default: jet), list of available colour tables specified by matplotlib: http://matplotlib.org/examples/color/colormaps_reference.html
interp – is a string specifying the interpolation algorithm to be used (Default: ‘nearest’). Available values are ‘none’, ‘nearest’, ‘bilinear’, ‘bicubic’, ‘spline16’, ‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’, ‘quadric’, ‘catrom’, ‘gaussian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’.
from rsgislib.tools import plotting inputImage1 = 'LS5TM_20000613_lat10lon6217_r67p231_rad_sref_ndvi.kea' inputImage2 = 'LS5TM_20000613_lat10lon6217_r67p231_rad_ndvi.kea' outputPlotFile = 'ARCSI_RAD_SREF_NDVI.pdf' plotting.plot_image_comparison(inputImage1, inputImage2, 1, 1, outputPlotFile, img1Min=-0.5, img1Max=1, img2Min=-0.5, img2Max=1, plotTitle='ARCSI SREF NDVI vs ARCSI RAD NDVI', xLabel='ARCSI SREF NDVI', yLabel='ARCSI RAD NDVI')
- rsgislib.tools.plotting.plot_image_histogram(input_img, imgBand, outputPlotFile, numBins=100, imgMin=None, imgMax=None, normOutput=False, plotTitle='Histogram', xLabel='X Axis', colour='blue', edgecolour='black', linewidth=None)
A function to plot the histogram of an image.
- Parameters:
input_img – is a string with the path to the image.
imgBand – is an int specifying the band in the image to be plotted.
outputPlotFile – is a string specifying the output PDF for the plot.
numBins – is an int specifying the number of bins within each axis of the histogram (default: 100)
imgMin – is a double specifying the minimum value to be used in the histogram from the image. If value is None then taken from the image.
imgMax – is a double specifying the maximum value to be used in the histogram from the image. If value is None then taken from the image.
normOutput – is a boolean specifying whether the histogram should be normalised (Default: False).
plotTitle – is a string specifying the title of the plot (Default: ‘2D Histogram’).
xLabel – is a string specifying the x axis label (Default: ‘X Axis’)
colour – is the colour of the bars in the plot (see matplotlib documentation for how to specify, either keyword or RGB values (e.g., [1.0,0,0])
edgecolour – is the colour of the edges of the bars
linewidth – is the thickness of the edges of the bars in the plot.
from rsgislib.tools import plotting plotting.plot_image_histogram("Baccini_Manaus_AGB_30.kea", 1, "BacciniHistogram.pdf", numBins=100, imgMin=0, imgMax=400, normOutput=True, plotTitle='Histogram of Baccini Biomass', xLabel='Baccini Biomass', color=[1.0,0.2,1.0], edgecolor='red', linewidth=0)
Vector Plots
- rsgislib.tools.plotting.plot_vec_fields(vec_file: str, vec_lyr: str, out_plot_file: str, x_plt_field: str, y_plt_field: str, x_lbl: str, y_lbl: str, title: str, feat_id_field: str = None, x_field_no_data: float = None, y_field_no_data: float = None, plt_width: int = 18, plt_height: int = 6, plt_line: bool = True)
A function which plots two variables from a vector layer.
- Parameters:
vec_file – input vector file
vec_lyr – input vector layer name
out_plot_file – output plot file name - specify format with extension.
x_plt_field – name of the field used for x-axis
y_plt_field – name of the field used for the y-axis
x_lbl – label for the x-axis
y_lbl – label for the y-axis
title – title of the plot
plt_width – optionally specify the figure width
plt_height – optionally specify the figure height
plt_line – if true (default) then drawn as line plot otherwise a scatter plot.
Visualise Raster Data
- rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(input_img: str, bands: List[int] = None, bbox: List[float] = None) Tuple[array, List[float]]
A function which retrieves image data as an array in an appropriate structure for use within the matplotlib imshow function. The extent is also returned. Note, this function assumes that the image pixels values are within an appropriate range for display.
- Parameters:
input_img – The input image file path.
bands – Optional list of image bands to be selected and returned. If not provided then all bands will be read. However, note that only 3 or 1 band(s) are valid for visualisation and an error will be thrown if the number of bands is not 3 or 1.
bbox – Optional bbox (xmin, xmax, ymin, ymax) used to subset the input image so only data for the subset are returned.
- Returns:
numpy.array either [n,m,3] or [n,m] and a bbox (xmin, xmax, ymin, ymax) specifying the extent of the image data.
img_sub_bbox = [554756, 577168, 9903924, 9944315] input_img = "sen2_img_strch.kea" img_data_arr, coords_bbox = get_gdal_raster_mpl_imshow(input_img, bands=[8,9,3], bbox=img_sub_bbox) import matplotlib.pyplot as plt fig, ax = plt.subplots() im = ax.imshow(img_data_arr, extent=coords_bbox) plt.show()
- rsgislib.tools.plotting.get_gdal_thematic_raster_mpl_imshow(input_img: str, band: int = 1, bbox: List[float] = None, out_patches: bool = False, cls_names_lut: Dict = None, alpha_lyr: bool = False) Tuple[array, List[float], list]
A function which retrieves thematic image data with a colour table as an array in an appropriate structure for use within the matplotlib imshow function. The image pixel values are converted from there thematic integer values to a three band array using the RGB values from the colour table. If the pixel values are required then use the get_gdal_raster_mpl_imshow function. The extent is also returned and optionally a list of matplotlib patches which can be used to create a legend.
- Parameters:
input_img – The input image file path.
band – The image band to be used for the visualisation (Default = 1).
bbox – Optional bbox (xmin, xmax, ymin, ymax) used to subset the input image so only data for the subset are returned.
out_patches – Boolean to specify whether patches should be returned to create a legend.
cls_names_lut – A dictionary LUT with labels for the classes. The dict key is the pixel value for the class and
alpha_lyr – a boolean specifying whether an alpha channel should be created and therefore the returned array will have 4 rather than 3 dims. If an alpha channel is created then then background will be transparent.
- Returns:
numpy.array either [n,m,3 or 4], a bbox (xmin, xmax, ymin, ymax) specifying the extent of the image data and list of matplotlib patches, if out_patches=False then None is returned.
img_sub_bbox = [554756, 577168, 9903924, 9944315] input_img = "class_img.kea" cls_names_lut = dict() cls_names_lut[1] = "Vegetation" cls_names_lut[2] = "Non-Veg" cls_names_lut[3] = "Productive Veg" (img_data_arr, coords_bbox, lgd_patches) = get_gdal_thematic_raster_mpl_imshow(input_img, band=1, bbox=img_sub_bbox, out_patches=True, cls_names_lut=cls_names_lut) import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.imshow(img_data_arr, extent=coords_bbox) ax.legend(handles=lgd_patches) plt.show()
- rsgislib.tools.plotting.linear_stretch_np_arr(arr_data: array, no_data_val: float = None, out_off: float = 0, out_gain: float = 1, out_int_type=False, min_out_val: float = 0, max_out_val: float = 1) array
A function which performs a linear stretch using the min-max values on a per band basis for a numpy array representing an image dataset. This function is useful in combination with get_gdal_raster_mpl_imshow for displaying raster data from an input image as a plot. By default this function returns values in a range 0 - 1 but if you prefer 0 - 255 then set the out_gain to 255 and the out_int_type to be True to get an 8bit unsigned integer value.
- Parameters:
arr_data – The numpy array as either [n,m,b] or [n,m] where n and m are the number of image pixels in the x and y axis’ and b is the number of image bands.
no_data_val – the no data value for the input data. If there isn’t a no data value then leave as None (default)
out_off – Output offset value (value * gain) + offset. Default: 0
out_gain – Output gain value (value * gain) + offset. Default: 1
out_int_type – False (default) and the output type will be float and True and the output type with be integers.
min_out_val – Minimum output value within the output array (default: 0)
max_out_val – Maximum output value within the output array (default: 1)
- Returns:
A number array with the rescaled values but same dimensions as the input numpy array.
img_sub_bbox = [554756, 577168, 9903924, 9944315] input_img = "sen2_img_strch.kea" img_data_arr, coords_bbox = get_gdal_raster_mpl_imshow(input_img, bands=[8,9,3], bbox=img_sub_bbox) img_data_arr = linear_stretch_np_arr(img_data_arr, no_data_val=0.0) import matplotlib.pyplot as plt fig, ax = plt.subplots() im = ax.imshow(img_data_arr, extent=coords_bbox) plt.show()
- rsgislib.tools.plotting.cumulative_stretch_np_arr(arr_data: array, no_data_val: float = None, lower: int = 2, upper: int = 98, out_off: float = 0, out_gain: float = 1, out_int_type=False, min_out_val: float = 0, max_out_val: float = 1) array
A function which performs a cumulative stretch using an upper and lower percentile to define the min-max values. This analysis is on a per band basis for a numpy array representing an image dataset. This function is useful in combination with get_gdal_raster_mpl_imshow for displaying raster data from an input image as a plot. By default this function returns values in a range 0 - 1 but if you prefer 0 - 255 then set the out_gain to 255 and the out_int_type to be True to get an 8bit unsigned integer value.
- Parameters:
arr_data – The numpy array as either [n,m,b] or [n,m] where n and m are the number of image pixels in the x and y axis’ and b is the number of image bands.
no_data_val – the no data value for the input data. If there isn’t a no data value then leave as None (default)
lower – lower percentile (default: 2)
upper – upper percentile (default: 98)
out_off – Output offset value (value * gain) + offset. Default: 0
out_gain – Output gain value (value * gain) + offset. Default: 1
out_int_type – False (default) and the output type will be float and True and the output type with be integers.
min_out_val – Minimum output value within the output array (default: 0)
max_out_val – Maximum output value within the output array (default: 1)
- Returns:
A number array with the rescaled values but same dimensions as the input numpy array.
img_sub_bbox = [554756, 577168, 9903924, 9944315] input_img = "sen2_img_strch.kea" img_data_arr, coords_bbox = get_gdal_raster_mpl_imshow(input_img, bands=[8,9,3], bbox=img_sub_bbox) img_data_arr = cumulative_stretch_np_arr(img_data_arr, no_data_val=0.0) import matplotlib.pyplot as plt fig, ax = plt.subplots() im = ax.imshow(img_data_arr, extent=coords_bbox) plt.show()
- rsgislib.tools.plotting.stdev_stretch_np_arr(arr_data: array, no_data_val: float = None, n_stdevs: float = 2.0, out_off: float = 0, out_gain: float = 1, out_int_type=False, min_out_val: float = 0, max_out_val: float = 1) array
A function which performs a standard deviation stretch using an upper and lower (mean + n*std) and (mean - n*std) to define the min-max values. This analysis is on a per band basis for a numpy array representing an image dataset. This function is useful in combination with get_gdal_raster_mpl_imshow for displaying raster data from an input image as a plot. By default this function returns values in a range 0 - 1 but if you prefer 0 - 255 then set the out_gain to 255 and the out_int_type to be True to get an 8bit unsigned integer value.
- Parameters:
arr_data – The numpy array as either [n,m,b] or [n,m] where n and m are the number of image pixels in the x and y axis’ and b is the number of image bands.
no_data_val – the no data value for the input data. If there isn’t a no data value then leave as None (default)
n_stdevs – number of standard deviations to be used for the stretch. Default: 2.0
out_off – Output offset value (value * gain) + offset. Default: 0
out_gain – Output gain value (value * gain) + offset. Default: 1
out_int_type – False (default) and the output type will be float and True and the output type with be integers.
min_out_val – Minimum output value within the output array (default: 0)
max_out_val – Maximum output value within the output array (default: 1)
- Returns:
A number array with the rescaled values but same dimensions as the input numpy array.
img_sub_bbox = [554756, 577168, 9903924, 9944315] input_img = "sen2_img_strch.kea" img_data_arr, coords_bbox = get_gdal_raster_mpl_imshow(input_img, bands=[8,9,3], bbox=img_sub_bbox) img_data_arr = stdev_stretch_np_arr(img_data_arr, no_data_val=0.0) import matplotlib.pyplot as plt fig, ax = plt.subplots() im = ax.imshow(img_data_arr, extent=coords_bbox) plt.show()
- rsgislib.tools.plotting.manual_stretch_np_arr(arr_data: array, min_max_vals: Dict | List[Dict], no_data_val: float = None, out_off: float = 0, out_gain: float = 1, out_int_type=False, min_out_val: float = 0, max_out_val: float = 1) array
A function which performs a linear stretch using the min-max values provided on a per band basis for a numpy array representing an image dataset. This function is useful in combination with get_gdal_raster_mpl_imshow for displaying raster data from an input image as a plot. By default this function returns values in a range 0 - 1 but if you prefer 0 - 255 then set the out_gain to 255 and the out_int_type to be True to get an 8bit unsigned integer value.
- Parameters:
arr_data – The numpy array as either [n,m,b] or [n,m] where n and m are the number of image pixels in the x and y axis’ and b is the number of image bands.
min_max_vals – either a list of dicts each with a ‘min’ and ‘max’ key specifying the min and max value for the stretch of each band. Or, if just a single band then provide a single dict rather than a list. The number items in the list must equal the number of dimensions within the arr_data.
no_data_val – the no data value for the input data. If there isn’t a no data value then leave as None (default)
out_off – Output offset value (value * gain) + offset. Default: 0
out_gain – Output gain value (value * gain) + offset. Default: 1
out_int_type – False (default) and the output type will be float and True and the output type with be integers.
min_out_val – Minimum output value within the output array (default: 0)
max_out_val – Maximum output value within the output array (default: 1)
- Returns:
A number array with the rescaled values but same dimensions as the input numpy array.
img_sub_bbox = [554756, 577168, 9903924, 9944315] input_img = "sen2_img_strch.kea" img_data_arr, coords_bbox = get_gdal_raster_mpl_imshow(input_img, bands=[8,9,3], bbox=img_sub_bbox) min_max_vals = list() min_max_vals.append({'min':10, 'max':400}) min_max_vals.append({'min':22, 'max':300}) min_max_vals.append({'min':1, 'max':120}) img_data_arr = manual_stretch_np_arr(img_data_arr, min_max_vals, no_data_val=0.0) import matplotlib.pyplot as plt fig, ax = plt.subplots() im = ax.imshow(img_data_arr, extent=coords_bbox) plt.show()
- rsgislib.tools.plotting.limit_range_np_arr(arr_data: array, min_thres: float = 0, min_out_val: float = 0, max_thres: float = 1, max_out_val: float = 1) array
A function which can be used to limit the range of the numpy array. For example, to mask values less than 0 to 0 and values greater than 1 to 1.
- Parameters:
arr_data – input numpy array.
min_thres – the threshold for the minimum value.
min_out_val – the value assigned to values below the min_thres
max_thres – the threshold for the maximum value.
max_out_val – the value assigned to the values above the max_thres
- Returns:
numpy array with output values.
Legends
- rsgislib.tools.plotting.create_legend_info_dict(input_img: str, cls_names_col: str, use_title_case=False, underscore_to_space=False, red_col: str = 'Red', green_col: str = 'Green', blue_col: str = 'Blue', alpha_col: str = 'Alpha', histogram_col: str = 'Histogram') Dict[str, Tuple[int]]
A function which creates the legend_info dict for the create_legend_img function from an input image file with RAT. It assumes that the RAT contains a column with the class names and columns with the class colours.
- Parameters:
input_img – The input image file path
cls_names_col – The name of the class names column within the RAT
use_title_case – Change the class name to title case (Default: False)
underscore_to_space – Convert underscores in the class name to spaces (Default: False)
red_col – The name of the red colour column within the RAT (Default: Red)
green_col – The name of the green colour column within the RAT (Default: Green)
blue_col – The name of the blue colour column within the RAT (Default: Blue)
alpha_col – The name of the alpha colour column within the RAT (Default: Alpha)
histogram_col – The name of the histogram column within the RAT (Default: Histogram)
- Returns:
- rsgislib.tools.plotting.create_legend_img(legend_info: Dict, n_cols: int = 1, box_size: Tuple[int] = (10, 20), title_str: str = None, font_size: int = 12, font: str = 'Arial', font_clr: Tuple[int] = (0, 0, 0, 255), col_width: int = None, img_height: int = None, char_width: int = 6, bkgd_clr: Tuple[int] = (255, 255, 255, 255), title_height: int = 16, margin: int = 2)
A function which can generate a legend PIL image object. Colours can be specified using any format PIL supports (i.e., hex or list 3 or 4 values). The output image also has an alpha channel.
- Parameters:
legend_info – dict using the class names as the key and value is the colour used for the class.
n_cols – the number of columns the classes are split between (Default: 1).
box_size – the size, in pixels, of the colour box for each class. Default: (10, 20)
title_str – An optional title for the legend. If None then no title, default: None
font_size – The size of the font to use for the legend (Default: 12)
font – Optionally, pass a ttf file or font name for the font to be used. Default: Arial
font_clr – The font colour (Default: (0, 0, 0, 255) i.e., black)
col_width – Override the calculated column width in pixels. (Default: None)
img_height – Override the calculated image height in pixels. (Default: None)
char_width – Define the number of pixels representing each character used for calculating column widths. Try changing this before overriding the column width. (Default: 6)
bkgd_clr – the background colour for the legend (Default: (255, 255, 255, 255) i.e., white). Note, this uses an alpha channel so specifying (255, 255, 255, 0) will provide a transparent background
title_height – Extra height in pixels for the title (Default: 16)
margin – The margin in pixels around the image each and between features (Default: 2)
- rsgislib.tools.plotting.create_legend_img_file(legend_info: Dict, out_img_file: str, n_cols: int = 1, box_size: Tuple[int] = (10, 20), title_str: str = None, font_size: int = 12, font: str = 'Arial', font_clr: Tuple[int] = (0, 0, 0, 255), col_width: int = None, img_height: int = None, char_width: int = 6, bkgd_clr: Tuple[int] = (255, 255, 255, 255), title_height: int = 16, margin: int = 2)
A function which uses the create_legend_img function to generate a legend image file using the PIL module. Colours can be specified using any format PIL supports (i.e., hex or list 3 or 4 values). The output image has an alpha channel.
- Parameters:
legend_info – dict using the class names as the key and value is the colour used for the class.
out_img_file – the output image file (Recommend output as PNG).
n_cols – the number of columns the classes are split between (Default: 1).
box_size – the size, in pixels, of the colour box for each class. Default: (10, 20)
title_str – An optional title for the legend. If None then no title, default: None
font_size – The size of the font to use for the legend (Default: 12)
font – Optionally, pass a ttf file or font name for the font to be used. Default: Arial
font_clr – The font colour (Default: (0, 0, 0, 255) i.e., black)
col_width – Override the calculated column width in pixels. (Default: None)
img_height – Override the calculated image height in pixels. (Default: None)
char_width – Define the number of pixels representing each character used for calculating column widths. Try changing this before overriding the column width. (Default: 6)
bkgd_clr – the background colour for the legend (Default: (255, 255, 255, 255) i.e., white). Note, this uses an alpha channel so specifying (255, 255, 255, 0) will provide a transparent background
title_height – Extra height in pixels for the title (Default: 16)
margin – The margin in pixels around the image each and between features (Default: 2)
- rsgislib.tools.plotting.create_legend_img_mpl_ax(ax: axis, legend_info: Dict, n_cols: int = 1, box_size: Tuple[int] = (10, 20), title_str: str = None, font_size: int = 12, font: str = 'Arial', font_clr: Tuple[int] = (0, 0, 0, 255), col_width: int = None, img_height: int = None, char_width: int = 6, bkgd_clr: Tuple[int] = (255, 255, 255, 255), title_height: int = 16, margin: int = 2, turn_off_axis_feats=True)
A function which uses the create_legend_img function to generate a legend using the PIL module and addeds it to a matplotlib axis for integration. Colours can be specified using any format PIL supports (i.e., hex or list 3 or 4 values). The output image has an alpha channel.
- Parameters:
legend_info – dict using the class names as the key and value is the colour used for the class.
out_img_file – the output image file (Recommend output as PNG).
n_cols – the number of columns the classes are split between (Default: 1).
box_size – the size, in pixels, of the colour box for each class. Default: (10, 20)
title_str – An optional title for the legend. If None then no title, default: None
font_size – The size of the font to use for the legend (Default: 12)
font – Optionally, pass a ttf file or font name for the font to be used. Default: Arial
font_clr – The font colour (Default: (0, 0, 0, 255) i.e., black)
col_width – Override the calculated column width in pixels. (Default: None)
img_height – Override the calculated image height in pixels. (Default: None)
char_width – Define the number of pixels representing each character used for calculating column widths. Try changing this before overriding the column width. (Default: 6)
bkgd_clr – the background colour for the legend (Default: (255, 255, 255, 255) i.e., white). Note, this uses an alpha channel so specifying (255, 255, 255, 0) will provide a transparent background
title_height – Extra height in pixels for the title (Default: 16)
margin – The margin in pixels around the image each and between features (Default: 2)
turn_off_axis_feats – an option which turns off the axis boundary lines and other graph features so the legend is just shown as an image (Default: True).
Other
- rsgislib.tools.plotting.gen_colour_lst(cmap_name: str, n_clrs: int, reverse: bool = False) List[str]
A function which gets a list of colours as hex strings from a matplotlib colour bar.
For available colour bars see: https://matplotlib.org/stable/tutorials/colors/colormaps.html
- Parameters:
cmap_name – The name of a matplotlib colour bar
n_clrs – The number of colours to be returned
reverse – Option to reverse the order of the colours
- Returns:
List of hex colour presentations
- rsgislib.tools.plotting.add_img_to_axis(ax: axis, img_file_path: str, turn_off_axis_feats=True)
A function which renders an image file (e.g., PNG, JPG; anything PIL will read) to a matplotlib axis. This can be useful for adding a separate legend or image to a plot with multiple axes.
- Parameters:
ax – The matplotlib axis to which to add the image to.
img_file_path – the file path to the input image.
turn_off_axis_feats – boolean specifying that the axis features (i.e., ticks and border) should turned off (Default: True)
- rsgislib.tools.plotting.update_y_tick_lbls(ax, multi=100000, integerize=False)
A function to update the y axis labels of a plot using a multiplier to rescale the values within the labels. For example, if the multiplier was 100000 and the axis tick was 500000 then 5.0 will be outputted as the tick label (or 5 if integerized). You can then update the axis label with the multiplier used (e.g., ax.set_ylabel(r”Freq. ($ imes 100,000$)”) )
- Parameters:
ax – the matplotlib axis
multi – the multiplier to be used.
integerize – boolean to specify whether the values should be integerized
- rsgislib.tools.plotting.hide_matplotlib_axis_border(ax)
For a matplotlib axis set the border and x,y axis’ as invisible.
- Parameters:
ax – the matplotlib axis